Deep Spatio-Temporal Encoding: Achieving Higher Accuracy by Aligning with External Real-World Data.

Published in EDBT/ICDT, 2024

Spatio-temporal deep learning has drawn a lot of attention since many downstream real-world applications can benefit from accurate predictions. For example, accurate prediction of heavy rainfall events is essential for effective urban water usage, flooding warning, and mitigation. In this paper, we propose a strategy to leverage spatially connected real-world features to enhance prediction accuracy. Specifically, we leverage spatially connected real-world climate data to predict heavy rainfall risks in a broad range in our case study. We experimentally ascertain that our Trans-Graph Convolutional Network (TGCN) accurately predicts heavy rainfall risks and real estate trends, demonstrating the advantage of incorporating external spatially-connected real-world data to improve model performance, and it shows that this proposed study has a significant potential to enhance spatio-temporal prediction accuracy, aiding in efficient urban water usage, flooding risk warning, and fair housing in real estate.

Download Slides